Biophotonics-Optical Science and Engineering for the 21st Century - Xun Shen
PREFACE
Biophotonics deals with interactions between photons and biological matter. It is an exciting frontier that involves a fusion of photonics and biology. Biophotonics is the science of generating and harnessing light (photons) to image, detect and manipulate biological materials. It offers great hope for the early detection of diseases and for new modalities of light-guided and light-activated therapies. It also provides powerful tools for studying molecular events, such as gene expression, protein-protein interaction, spatial and temporal distribution of the molecules of biological interest, and many chemico-physical processes in living cells and living organisms. Fluorescence, scattering and penetrating light are frequently used to detect and image the biological systems at molecular, cellular and organismic levels. The light generated by metabolic processes in living organisms also provides a good optical means to reflect the structure and function of the living cells and organisms, which leads to a special aspect of biophotonics called "Biophoton research". Either biophotonics or biophoton research creates many opportunities for chemists, physicists, biologists, engineers, medical doctors and heahhcare professionals. Also, educating biomedical personnel and new generations of researchers in biophotonics is of the utmost importance to keep up with the increasing worldwide demands.
worldwide demands.
On October 12-16 2003, scientists from 12 nations met in Beijing in order to present and to discuss the most recent results in the interdisciplinary field of biophotonics and biophoton research. Profound discussions were devoted to the new spectroscopic techniques in microscopic imaging and optical tomography that allow determination of the structures and functions in cells and tissues. Besides problems of basic research in this field of biophotoiucs, various applications of these new optical technologies in non-invasive or minimally invasive optical imaging, monitoring, and sensing of complex systems such as tissues at the cellular level and cells at the subcellular level have been presented. Scientists working in the particular field of biophoton research presented new and exciting experimental results on spontaneous photon emission from living organisms. They discussed the probable light sources within the cells, the possible coherence of the photon field within the organism, and its bio-communicative aspects.
The field of biophotonics and biophoton research as covered in this book is an important step forward in our understanding of the essence of biology, which is composite and complex. Biology studies organisms: objects, which are complicated enough to live. These objects cannot be understood by reducing life to a simple summation of singular properties of many molecular components. In this respect, biophotonics and biophoton research offer a possibility to rise above biochemical reductionism approach of molecular biology and study with success life within the concept of "quantum biology". In the 1930's, Pascual Jordan, one of the founders of quantum theory has already proposed the concept of "quantum biology". The name is recognized in the famous "Cold Spring Harbor Symposia on Quantum Biology", which were originally aimed at the new understanding of biology with the new developments in physics and chemistry. However, the consequences of quantum physics have not been made in biology, even not in the "Cold Spring Harbor Symposia on Quantum Biology", which were strongly involved in the birth of molecular biology. In fact, at that time the reductionism paradigm, which assumes that systems can be understood by simply accounting for the properties of their parts, was too overwhelming in biology. In particular during the time that there was no clear theory of the gene's inner working, the Watson-Crick discovery of the double helix led to a successful development of the paradigm of the gene as ultimate control agent. It has the additional effect of diminishing the concept of the organism in experimental biology. In the mid-20"' century, the life sciences in universities throughout the world still maintained strong programs in organismal biology, but in the 1980's and 1990's, in most universities, especially in Westem Europe and United States, these activities were segregated into historical departments. A profound shift occiured in our perception of the world (from organisms to gene machines) in which we learned more and more about molecules and molecular reactions and less about life. In fact, the field of biophotonics and biophoton research has important consequences for the re-discovery and implementation of the quantum physics concept in biology.
Download
http://s18.alxa.net/s18/srvs2/02/003...y-Xun.Shen.rar
PREFACE
Biophotonics deals with interactions between photons and biological matter. It is an exciting frontier that involves a fusion of photonics and biology. Biophotonics is the science of generating and harnessing light (photons) to image, detect and manipulate biological materials. It offers great hope for the early detection of diseases and for new modalities of light-guided and light-activated therapies. It also provides powerful tools for studying molecular events, such as gene expression, protein-protein interaction, spatial and temporal distribution of the molecules of biological interest, and many chemico-physical processes in living cells and living organisms. Fluorescence, scattering and penetrating light are frequently used to detect and image the biological systems at molecular, cellular and organismic levels. The light generated by metabolic processes in living organisms also provides a good optical means to reflect the structure and function of the living cells and organisms, which leads to a special aspect of biophotonics called "Biophoton research". Either biophotonics or biophoton research creates many opportunities for chemists, physicists, biologists, engineers, medical doctors and heahhcare professionals. Also, educating biomedical personnel and new generations of researchers in biophotonics is of the utmost importance to keep up with the increasing worldwide demands.
worldwide demands.
On October 12-16 2003, scientists from 12 nations met in Beijing in order to present and to discuss the most recent results in the interdisciplinary field of biophotonics and biophoton research. Profound discussions were devoted to the new spectroscopic techniques in microscopic imaging and optical tomography that allow determination of the structures and functions in cells and tissues. Besides problems of basic research in this field of biophotoiucs, various applications of these new optical technologies in non-invasive or minimally invasive optical imaging, monitoring, and sensing of complex systems such as tissues at the cellular level and cells at the subcellular level have been presented. Scientists working in the particular field of biophoton research presented new and exciting experimental results on spontaneous photon emission from living organisms. They discussed the probable light sources within the cells, the possible coherence of the photon field within the organism, and its bio-communicative aspects.
The field of biophotonics and biophoton research as covered in this book is an important step forward in our understanding of the essence of biology, which is composite and complex. Biology studies organisms: objects, which are complicated enough to live. These objects cannot be understood by reducing life to a simple summation of singular properties of many molecular components. In this respect, biophotonics and biophoton research offer a possibility to rise above biochemical reductionism approach of molecular biology and study with success life within the concept of "quantum biology". In the 1930's, Pascual Jordan, one of the founders of quantum theory has already proposed the concept of "quantum biology". The name is recognized in the famous "Cold Spring Harbor Symposia on Quantum Biology", which were originally aimed at the new understanding of biology with the new developments in physics and chemistry. However, the consequences of quantum physics have not been made in biology, even not in the "Cold Spring Harbor Symposia on Quantum Biology", which were strongly involved in the birth of molecular biology. In fact, at that time the reductionism paradigm, which assumes that systems can be understood by simply accounting for the properties of their parts, was too overwhelming in biology. In particular during the time that there was no clear theory of the gene's inner working, the Watson-Crick discovery of the double helix led to a successful development of the paradigm of the gene as ultimate control agent. It has the additional effect of diminishing the concept of the organism in experimental biology. In the mid-20"' century, the life sciences in universities throughout the world still maintained strong programs in organismal biology, but in the 1980's and 1990's, in most universities, especially in Westem Europe and United States, these activities were segregated into historical departments. A profound shift occiured in our perception of the world (from organisms to gene machines) in which we learned more and more about molecules and molecular reactions and less about life. In fact, the field of biophotonics and biophoton research has important consequences for the re-discovery and implementation of the quantum physics concept in biology.
Download
http://s18.alxa.net/s18/srvs2/02/003...y-Xun.Shen.rar